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Solution 7

1. Consider maps from R to itself. Provide explicit examples of continuous maps with exactly
one, two and three fixed, and one map satisfying |f(z) — f(y)| < | —y| but no fixed points.

Solution. Let f be our function. We consider g(x) = f(x) — x. It suffices to produce
examples with exactly one, two and three roots. For instance, ¢1(z) = —z has exactly
one root. go(w) = 2 — 1 has exactly two roots. g3(z) = (z — 1)(x — 2)(z — 3) has ex-
actly three roots. The corresponding f1, fa, f3 fulfil our requirement. Finally, the function
f(z) = x +log(1l 4+ e™*) does not have any fixed point.

2. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T* becomes a contraction. Show that 7' admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T* is a contraction, there is a unique fixed point € X such that
Tkz = x. Then TFHy = T*Tx = Tx shows that Tz is also a fixed point of T*. From the
uniqueness of fixed point we conclude Tz = x, that is, x is a fixed point for 7. Uniqueness
is clear since any fixed point of T is also a fixed point of T*.

3. Show that the equation 2zsinz — z* + z = 0.001 has a root near z = 0.

Solution. Here ¥(z) = 2rsinz — %, We need to find some r,~ so it is a contraction.

We have
U (z) = 2sinx + 2z cosz — 4z°.

Using |sinz| < |z| and |cosz| < 1, we have
U/ ()] < 2r +2r +4r2 =dr(1+7%) , Va,|z| <r.

By the mean-value theorem, ¥ (1) — ¥(xy) = ¥/ (2)(x1 — x — 2) where z lies on the line
segment from x; to xa (so |z| < r when |z1],|z2| < 7). Therefore,

[W(ar) = an)| = [W(2)[la1 — 2a] < 20(1+ 1)1 — o] .

Now we fix r = 1/5. Then v = 4r(1 + %) = 0.812 and R = (1 — 7)r = 0.0336. By the
theorem on the perturbation of identity, the equation = + ¥(x) = a is solvable whenever
la] <0.0336. Now, 0.001 < 0.0336, so the equation has a root x satisfying |z| < 1/5 = 0.2.

4. Study the solvability of
sin? 7z + 222 = 2.0012 .

Hint: Consider ®(1) = 2 and shift things to the origin as done in Notes.

Solution. The equation can be expressed as ®(z) = 2.0012. Observe that (1) = 2. We
let ®1(z) = ®(z + 1) — ®(1) = sin? 7z + 222 + 42 . Now, 4z is not the form of identity,
but in any case we have reduced the problem to

sin? 7z + 222 + 4o = 0.0012.
To solve this new equation, which is the same as

1 1
i sin’® ma + 53:2 + 2 = 0.0003,
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1 1
is in the form of perturbation of identity. Let ¥(x) = 1 sin? 7 4 §:r2 be the perturbation

term. For z,|z| < r, we have ¥'(z) = %sin 21z + x, so |V (x)| < 7%r/2 + r after using

sin 27wx| < 2m|x|. Therefore, by the mean value theorem, there is some z lying between z;
and z2 (so |z| <7 too)
/ 2y
|W(z1) — W(z2)| = [W(2)[[z1 — 22| < 5 +r.

If now we choose r = 1/(47?), then v = 7%r/2 +r = 1/2 + 1/(47?) < 1. By the theorem
on perturbation of identity, the equation z + ¥(z) = a is solvable for a,|a| < R, where

1 1 1
k= (2 - 47r2> prol
Now, we check that 0.0003 < R, so x + ¥(x) = 0.0012 is solvable, which in turn implies
that the original problem is also solvable.

5. Can you solve the system of equations

r+yt=0, y—22=00157

Solution. Here we work on R? and ®(z,y) = (z,y)+¥(z,y) where U(z,y) = (V1 (x,y), Va(z,y)) =
(—y*, 2?). We have

““1l_y — 4 -9 Z72
8:]: Y y7 x? 8y

n I =0

It follows that

|U(p) — ¥(q)| < V16y5 + 422|p — q| < 2r\/1 +4r2|p — q| ,

where p = (z1,91),q = (22,¥2), and |p — ¢| is the Euclidean distance between p and q. We
choose r = 1/3, so v = 2rv/1 + 4r?2 = 0.6996. Then R = (1 — v)r = 0.2. Now, the point
(0,0.015) satisfies |(0,0.015)| = 0.015 < 0.2, so this system has a solution (z,y) satisfying

|(z,y)| <1/3.
Note. Here we have used the discussion on page 8 in the revised notes: W is a contraction
when

D (0%;/0x;)? < 1.

%,J

6. Can you solve the system of equations
t+y—ax?=0, x—y+azysiny=—0.0057

Solution. First we rewrite the system in the form of I + ¥. Indeed, by adding up and
subtracting the equations, we see that the system is equivalent to

z+ (—2? + 2ysiny)/2 = —0.0025, y+ (—x* — zysiny)/2 = 0.0025 .

Now we can take

1
U(z,y) = =(—2* + zysiny, —a® — zysiny) ,

2
and proceed as in the previous problem.
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7. Show that the integral equation

1 .
" sin @
y(z) = ae —/0 5 v,

is solvable for sufficiently small a. Give an estimate on the smallness of a.
Solution. We take

sSiInx g

1
Bo)@) = yla) + [ FEOd

so that

We have

W(y)(x) — y)(x)| = Asmﬂﬁw—ﬁwm4

2
: /0 i(y%(t) + Y1 (02 ()] + v3 (1) [y1(£) — ya(t)| dt

1

1
< 5 [ RO+ )]+ 30) dtln — vele
0

after noting 1/(3 —¢) <1/2 for ¢t € [0, 1]. Therefore, for y € B,.(0),

3r2
19() = ¥(w2)lloe < "l = w2loc

and VU is a contraction as long as 3r?/2 is less than 1. Let us choose 7 = v/2/2 so
that 3r2/2 = 3/4 < 1. By using the theorem on Perturbation of Identity, the equation
®(y) = ae® is solvable in B,(0) as long as ||[ae®|loo < R = (1 —3/4)r =2/8 . Ase* < e
on [0, 1], we conclude that whenever |a| < v/2e~!/8, this integral equation is solvable.

8. Let A = (a;j) be an n x n matrix. Show that the matrix I + A is invertible if ) |
= 1.

2
ij Qi < 1.

Give an example showing that I + A could become singular when )
Solution. Let ®(x) = Iz + Ax so ¥(z) = Az for x € R". We have

2
ij g

[W(z1) = U(z2)ll2 = [[Alz1 = 22)[|2 < [[Afl]lz]l2 -

As explained in Notes, we have the following estimate on the operator norm, ||A| <
Do afj. Take v =3, ;laij|. If 32, ;aij <1, ¥ is a contraction and there is only one root
of the equation ®(z) = 0 in the ball B,.(0). However, since we already know ®(0) = 0, 0
is the unique root. Now, we claim that I + A is non-singular, for there is some z € R"
satisfying (I + A)z = 0, we can find a small number « such that az € B,(0). By what we
have just shown, az = 0 so z = 0, that is, I + A is non-singular and thus invertible.

Note. See how linearity plays its role in this problem.

9. Let f: R — R be C% and f(z¢) = 0, f/(20) # 0. Show that there exists some p > 0 such

that
f(z)

T Py

x € (fL’O—P,xO‘FP)a
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10.

11.

is a contraction. This provides a justification for Newton’s method in finding roots for an
equation.

. / _ f(x)f,/($) : : 2 — / 1
Solution. 7'(z) = TP Since f is C* and f(xo) =0, f'(z0) # 0, it follows that T’
x
is C'! in a neighborhood of zq with T'(xg) = w0, 1" (x¢) = 0 and there exists p > 0

’T/(.%')| <1, ze€ (:UO —2p, o + 2p)7

As a result, T' is a contraction in [xg — p, zo + p).

Consider the iteration
Tpy1 = axn (1 —24,), x1 € 0,1] .

Find

(a) The range of « so that {x,} remains in [0, 1] .
(b) The range of « so that the iteration has a unique fixed point 0 in [0, 1].

(c) Show that for a € [0, 1] the fixed point 0 is attracting in the sense: x,, — 0 whenever
xo € [0,1].

Solution. Let Tz = ax(1 — ). The max of T" attains at 1/2 so the maximal value is «/4.
Therefore, the range of « is [0,4] so that 7" maps [0, 1] to itself. Next, 0 is always a fixed
point of T'. To get no other, we set = ax(1—x) and solve for x and get z = (a—1)/cv. So
there is no other fixed point if a € [0,1]. Finally, it is clear that 7" becomes a contraction
when « € [0,1), so the sequence {z,} with z¢ € [0,1] , x, = Tz, always tends to 0 as
n — o0o. Although T is not a contraction when o = 1, one can still use elementary mean
(that is, {x,} is always decreasing,) to show that 0 is an attracting fixed point.

Show that every continuous function from [0, 1] to itself admits a fixed point. Here we
don’t need it a contraction. Suggestion: Consider the sign of g(z) = f(x) —x at 0,1 where
f is the given function.

Solution. Let f € C0,1]. Clearly, if f(0) = 0, then 0 is a fixed point. So assume
f(0) # 0. Here we take f(0) > 0. Consider the continuous function g(z) = f(x) — z. We
have g(0) = f(0) > 0 and g(1) = f(1) — 1 < 0. If equality holds, then f(1) =1, 1is a
fixed point. If inequality holds, that is, g(1) < 0, by the mean-value theorem there is some
€ € (0,1) such that g(¢) = 0, that is, f(§) —& =0, so £ is a fixed point. The case f(0) <0
can be handled similarly.

Note. This example shows that every continuous function from [0, 1] to itself, not only
contractions, admits a least one fixed point. (But not necessarily unique.) Similar result
holds for all continuous maps on a compact, convex subset in R™ to itself. It is called
Brouwer’s fixed point theorem.



