Solution 7

1. Consider maps from $\mathbb R$ to itself. Provide explicit examples of continuous maps with exactly one, two and three fixed, and one map satisfying $|f(x)-f(y)| < |x-y|$ but no fixed points.

Solution. Let f be our function. We consider $g(x) = f(x) - x$. It suffices to produce examples with exactly one, two and three roots. For instance, $g_1(x) = -x$ has exactly one root. $g_2(x) = x^2 - 1$ has exactly two roots. $g_3(x) = (x - 1)(x - 2)(x - 3)$ has exactly three roots. The corresponding f_1, f_2, f_3 fulfil our requirement. Finally, the function $f(x) = x + \log(1 + e^{-x})$ does not have any fixed point.

2. Let T be a continuous map on the complete metric space X. Suppose that for some k , T^k becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case $k = 1$.

Solution. Since T^k is a contraction, there is a unique fixed point $x \in X$ such that $T^k x = x$. Then $T^{k+1} x = T^k T x = T x$ shows that $T x$ is also a fixed point of T^k . From the uniqueness of fixed point we conclude $Tx = x$, that is, x is a fixed point for T. Uniqueness is clear since any fixed point of T is also a fixed point of T^k .

3. Show that the equation $2x \sin x - x^4 + x = 0.001$ has a root near $x = 0$.

Solution. Here $\Psi(x) = 2x \sin x - x^4$. We need to find some r, γ so it is a contraction. We have

$$
\Psi'(x) = 2\sin x + 2x\cos x - 4x^2.
$$

Using $|\sin x| < |x|$ and $|\cos x| \leq 1$, we have

$$
|\Psi'(x)| \leq 2r + 2r + 4r^2 = 4r(1 + r^2), \quad \forall x, |x| \leq r.
$$

By the mean-value theorem, $\Psi(x_1) - \Psi(x_2) = \Psi'(z)(x_1 - x - 2)$ where z lies on the line segment from x_1 to x_2 (so $|z| \leq r$ when $|x_1|, |x_2| \leq r$). Therefore,

$$
|\Psi(x_1) - \Psi(x_2)| = |\Psi(z)||x_1 - x_2| \leq 2r(1+r^2)|x_1 - x_2|.
$$

Now we fix $r = 1/5$. Then $\gamma = 4r(1 + r^2) = 0.812$ and $R = (1 - \gamma)r = 0.0336$. By the theorem on the perturbation of identity, the equation $x + \Psi(x) = a$ is solvable whenever $|a| \le 0.0336$. Now, $0.001 \le 0.0336$, so the equation has a root x satisfying $|x| \le 1/5 = 0.2$.

4. Study the solvability of

$$
\sin^2 \pi x + 2x^2 = 2.0012
$$
.

Hint: Consider $\Phi(1) = 2$ and shift things to the origin as done in Notes.

Solution. The equation can be expressed as $\Phi(x) = 2.0012$. Observe that $\Phi(1) = 2$. We let $\Phi_1(x) = \Phi(x+1) - \Phi(1) = \sin^2 \pi x + 2x^2 + 4x$. Now, 4x is not the form of identity, but in any case we have reduced the problem to

$$
\sin^2 \pi x + 2x^2 + 4x = 0.0012.
$$

To solve this new equation, which is the same as

$$
\frac{1}{4}\sin^2 \pi x + \frac{1}{2}x^2 + x = 0.0003,
$$

is in the form of perturbation of identity. Let $\Psi(x) = \frac{1}{4} \sin^2 \pi x + \frac{1}{2}$ $\frac{1}{2}x^2$ be the perturbation term. For $x, |x| \leq r$, we have $\Psi'(x) = \frac{\pi}{4} \sin 2\pi x + x$, so $|\Psi'(x)| \leq \pi^2 r/2 + r$ after using $\sin 2\pi x \leq 2\pi |x|$. Therefore, by the mean value theorem, there is some z lying between x_1 and x_2 (so $|z| \leq r$ too)

$$
|\Psi(x_1) - \Psi(x_2)| = |\Psi'(z)||x_1 - x_2| \le \frac{\pi^2 r}{2} + r.
$$

If now we choose $r = 1/(4\pi^2)$, then $\gamma = \pi^2 r/2 + r = 1/2 + 1/(4\pi^2) < 1$. By the theorem on perturbation of identity, the equation $x + \Psi(x) = a$ is solvable for $a, |a| \le R$, where

$$
R = \left(\frac{1}{2} - \frac{1}{4\pi^2}\right) \frac{1}{4\pi^2} .
$$

Now, we check that $0.0003 < R$, so $x + \Psi(x) = 0.0012$ is solvable, which in turn implies that the original problem is also solvable.

5. Can you solve the system of equations

$$
x + y^4 = 0, \quad y - x^2 = 0.015 ?
$$

Solution. Here we work on \mathbb{R}^2 and $\Phi(x, y) = (x, y) + \Psi(x, y)$ where $\Psi(x, y) = (\Psi_1(x, y), \Psi_2(x, y)) =$ $(-y^4, x^2)$. We have

$$
\frac{\partial \Psi_1}{\partial x} = 0, \quad \frac{\partial \Psi_1}{\partial y} = -4y^3 \ , \quad \frac{\partial \Psi_2}{\partial x} = 2x \ , \quad \frac{\partial \Psi_2}{\partial y} = 0 \ .
$$

It follows that

$$
|\Psi(p) - \Psi(q)| \le \sqrt{16y^6 + 4x^2}|p - q| \le 2r\sqrt{1 + 4r^2}|p - q|,
$$

where $p = (x_1, y_1), q = (x_2, y_2), \text{ and } |p - q|$ is the Euclidean distance between p and q. We choose $r = 1/3$, so $\gamma = 2r\sqrt{1+4r^2} = 0.6996$. Then $R = (1 - \gamma)r = 0.2$. Now, the point $(0, 0.015)$ satisfies $|(0, 0.015)| = 0.015 < 0.2$, so this system has a solution (x, y) satisfying $|(x, y)| < 1/3$.

Note. Here we have used the discussion on page 8 in the revised notes: Ψ is a contraction when

$$
\sqrt{\sum_{i,j} (\partial \Psi_i/\partial x_j)^2} < 1.
$$

6. Can you solve the system of equations

$$
x + y - x2 = 0, \quad x - y + xy \sin y = -0.005 ?
$$

Solution. First we rewrite the system in the form of $I + \Psi$. Indeed, by adding up and subtracting the equations, we see that the system is equivalent to

$$
x + (-x2 + xy \sin y)/2 = -0.0025, \quad y + (-x2 - xy \sin y)/2 = 0.0025.
$$

Now we can take

$$
\Psi(x, y) = \frac{1}{2}(-x^2 + xy\sin y, -x^2 - xy\sin y),
$$

and proceed as in the previous problem.

7. Show that the integral equation

$$
y(x) = \alpha e^x - \int_0^1 \frac{\sin x}{3 - t} y^3(t) dt,
$$

is solvable for sufficiently small α . Give an estimate on the smallness of α . Solution. We take

$$
\Phi(y)(x) = y(x) + \int_0^1 \frac{\sin x}{3 - t} y^3(t) dt,
$$

so that

$$
\Psi(y)(x) = \int_0^1 \frac{\sin x}{3 - t} y^3(t) dt.
$$

We have

$$
\begin{aligned} |\Psi(y_1)(x) - \Psi(y_2)(x)| &= \left| \int_0^1 \frac{\sin x}{3 - t} (y_1^3(t) - y_2^3(t)) \, dt \right| \\ &\leq \left| \int_0^2 \frac{1}{3 - t} (y_1^2(t) + |y_1(t)y_2(t)| + y_2^2(t)) |y_1(t) - y_2(t)| \, dt \right| \\ &\leq \left| \frac{1}{2} \int_0^1 (y_1^2(t) + |y_1(t)y_2(t)| + y_2^2(t)) \, dt \|y_1 - y_2\|_{\infty} \right|, \end{aligned}
$$

after noting $1/(3-t) \leq 1/2$ for $t \in [0,1]$. Therefore, for $y \in B_r(0)$,

$$
\|\Psi(y_1)-\Psi(y_2)\|_{\infty}\leq \frac{3r^2}{2}\|y_1-y_2\|_{\infty},
$$

and Ψ is a contraction as long as $3r^2/2$ is less than 1. Let us choose $r = \sqrt{ }$ $2/2$ so that $3r^2/2 = 3/4 < 1$. By using the theorem on Perturbation of Identity, the equation $\Phi(y) = \alpha e^x$ is solvable in $B_r(0)$ as long as $\|\alpha e^x\|_{\infty} \le R = (1 - 3/4)r = \sqrt{2}/8$. As $e^x \le e$ $\mathcal{L}(y) = \alpha e^{-y}$ is solvable in $D_r(0)$ as long as $\|\alpha e^{-y}\|_{\infty} \leq n = (1 - \frac{3}{4})r = \frac{1}{2} \times 2$. As e^{-y} on [0, 1], we conclude that whenever $|\alpha| \leq \sqrt{2}e^{-1}/8$, this integral equation is solvable.

8. Let $A = (a_{ij})$ be an $n \times n$ matrix. Show that the matrix $I + A$ is invertible if $\sum_{i,j} a_{ij}^2 < 1$. Give an example showing that $I + A$ could become singular when $\sum_{i,j} a_{ij}^2 = 1$.

Solution. Let $\Phi(x) = Ix + Ax$ so $\Psi(x) = Ax$ for $x \in \mathbb{R}^n$. We have

$$
\|\Psi(x_1)-\Psi(x_2)\|_2=\|A(x_1-x_2)\|_2\leq\|A\|\|x\|_2.
$$

 $\sum_{i,j} a_{ij}^2$. Take $\gamma = \sum_{i,j} |a_{ij}|$. If $\sum_{i,j} a_{ij} < 1$, Ψ is a contraction and there is only one root As explained in Notes, we have the following estimate on the operator norm, $||A|| \le$ of the equation $\Phi(x) = 0$ in the ball $B_r(0)$. However, since we already know $\Phi(0) = 0, 0$ is the unique root. Now, we claim that $I + A$ is non-singular, for there is some $z \in \mathbb{R}^n$ satisfying $(I + A)z = 0$, we can find a small number α such that $\alpha z \in B_r(0)$. By what we have just shown, $\alpha z = 0$ so $z = 0$, that is, $I + A$ is non-singular and thus invertible.

Note. See how linearity plays its role in this problem.

9. Let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0) = 0, f'(x_0) \neq 0$. Show that there exists some $\rho > 0$ such that

$$
Tx = x - \frac{f(x)}{f'(x)}, \quad x \in (x_0 - \rho, x_0 + \rho),
$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.

Solution. $T'(x) = \frac{f(x)f''(x)}{f'(x)^2}$ $\frac{f(x)}{f'(x)^2}$. Since f is C^2 and $f(x_0) = 0, f'(x_0) \neq 0$, it follows that T is C^1 in a neighborhood of x_0 with $T(x_0) = x_0$, $T'(x_0) = 0$ and there exists $\rho > 0$

 $|T'(x)| < 1, \quad x \in (x_0 - 2\rho, x_0 + 2\rho),$

As a result, T is a contraction in $[x_0 - \rho, x_0 + \rho]$.

10. Consider the iteration

$$
x_{n+1} = \alpha x_n (1 - x_n), \ x_1 \in [0, 1] \ .
$$

Find

- (a) The range of α so that $\{x_n\}$ remains in $[0, 1]$.
- (b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].
- (c) Show that for $\alpha \in [0,1]$ the fixed point 0 is attracting in the sense: $x_n \to 0$ whenever $x_0 \in [0, 1].$

Solution. Let $Tx = \alpha x(1-x)$. The max of T attains at $1/2$ so the maximal value is $\alpha/4$. Therefore, the range of α is [0, 4] so that T maps [0, 1] to itself. Next, 0 is always a fixed point of T. To get no other, we set $x = \alpha x(1-x)$ and solve for x and get $x = (\alpha - 1)/\alpha$. So there is no other fixed point if $\alpha \in [0,1]$. Finally, it is clear that T becomes a contraction when $\alpha \in [0, 1)$, so the sequence $\{x_n\}$ with $x_0 \in [0, 1]$, $x_n = T^n x_0$, always tends to 0 as $n \to \infty$. Although T is not a contraction when $\alpha = 1$, one can still use elementary mean (that is, $\{x_n\}$ is always decreasing,) to show that 0 is an attracting fixed point.

11. Show that every continuous function from [0, 1] to itself admits a fixed point. Here we don't need it a contraction. Suggestion: Consider the sign of $g(x) = f(x) - x$ at 0, 1 where f is the given function.

Solution. Let $f \in C[0,1]$. Clearly, if $f(0) = 0$, then 0 is a fixed point. So assume $f(0) \neq 0$. Here we take $f(0) > 0$. Consider the continuous function $g(x) = f(x) - x$. We have $g(0) = f(0) > 0$ and $g(1) = f(1) - 1 \le 0$. If equality holds, then $f(1) = 1$, 1 is a fixed point. If inequality holds, that is, $g(1) < 0$, by the mean-value theorem there is some $\xi \in (0,1)$ such that $g(\xi) = 0$, that is, $f(\xi) - \xi = 0$, so ξ is a fixed point. The case $f(0) < 0$ can be handled similarly.

Note. This example shows that every continuous function from $[0, 1]$ to itself, not only contractions, admits a least one fixed point. (But not necessarily unique.) Similar result holds for all continuous maps on a compact, convex subset in \mathbb{R}^n to itself. It is called Brouwer's fixed point theorem.