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Solution 7

1. Consider maps from R to itself. Provide explicit examples of continuous maps with exactly
one, two and three fixed, and one map satisfying |f(x)−f(y)| < |x−y| but no fixed points.

Solution. Let f be our function. We consider g(x) = f(x) − x. It suffices to produce
examples with exactly one, two and three roots. For instance, g1(x) = −x has exactly
one root. g2(x) = x2 − 1 has exactly two roots. g3(x) = (x − 1)(x − 2)(x − 3) has ex-
actly three roots. The corresponding f1, f2, f3 fulfil our requirement. Finally, the function
f(x) = x+ log(1 + e−x) does not have any fixed point.

2. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T k becomes a contraction. Show that T admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T k is a contraction, there is a unique fixed point x ∈ X such that
T kx = x. Then T k+1x = T kTx = Tx shows that Tx is also a fixed point of T k. From the
uniqueness of fixed point we conclude Tx = x, that is, x is a fixed point for T . Uniqueness
is clear since any fixed point of T is also a fixed point of T k.

3. Show that the equation 2x sinx− x4 + x = 0.001 has a root near x = 0.

Solution. Here Ψ(x) = 2x sinx − x4. We need to find some r, γ so it is a contraction.
We have

Ψ′(x) = 2 sinx+ 2x cosx− 4x2.

Using | sinx| ≤ |x| and | cosx| ≤ 1, we have

|Ψ′(x)| ≤ 2r + 2r + 4r2 = 4r(1 + r2) , ∀x, |x| ≤ r .

By the mean-value theorem, Ψ(x1) − Ψ(x2) = Ψ′(z)(x1 − x − 2) where z lies on the line
segment from x1 to x2 (so |z| ≤ r when |x1|, |x2| ≤ r). Therefore,

|Ψ(x1)−Ψ(x2)| = |Ψ(z)||x1 − x2| ≤ 2r(1 + r2)|x1 − x2| .

Now we fix r = 1/5. Then γ = 4r(1 + r2) = 0.812 and R = (1 − γ)r = 0.0336. By the
theorem on the perturbation of identity, the equation x + Ψ(x) = a is solvable whenever
|a| ≤ 0.0336. Now, 0.001 < 0.0336, so the equation has a root x satisfying |x| ≤ 1/5 = 0.2.

4. Study the solvability of
sin2 πx+ 2x2 = 2.0012 .

Hint: Consider Φ(1) = 2 and shift things to the origin as done in Notes.

Solution. The equation can be expressed as Φ(x) = 2.0012. Observe that Φ(1) = 2. We
let Φ1(x) = Φ(x + 1) − Φ(1) = sin2 πx + 2x2 + 4x . Now, 4x is not the form of identity,
but in any case we have reduced the problem to

sin2 πx+ 2x2 + 4x = 0.0012.

To solve this new equation, which is the same as

1

4
sin2 πx+

1

2
x2 + x = 0.0003,



2018 Fall Mathematical Analysis III 2

is in the form of perturbation of identity. Let Ψ(x) =
1

4
sin2 πx+

1

2
x2 be the perturbation

term. For x, |x| ≤ r, we have Ψ′(x) =
π

4
sin 2πx + x, so |Ψ′(x)| ≤ π2r/2 + r after using

sin 2πx| ≤ 2π|x|. Therefore, by the mean value theorem, there is some z lying between x1
and x2 (so |z| ≤ r too)

|Ψ(x1)−Ψ(x2)| = |Ψ′(z)||x1 − x2| ≤
π2r

2
+ r .

If now we choose r = 1/(4π2), then γ = π2r/2 + r = 1/2 + 1/(4π2) < 1. By the theorem
on perturbation of identity, the equation x+ Ψ(x) = a is solvable for a, |a| ≤ R, where

R =

(
1

2
− 1

4π2

)
1

4π2
.

Now, we check that 0.0003 < R, so x + Ψ(x) = 0.0012 is solvable, which in turn implies
that the original problem is also solvable.

5. Can you solve the system of equations

x+ y4 = 0, y − x2 = 0.015 ?

Solution. Here we work on R2 and Φ(x, y) = (x, y)+Ψ(x, y) where Ψ(x, y) = (Ψ1(x, y),Ψ2(x, y)) =
(−y4, x2). We have

∂Ψ1

∂x
= 0,

∂Ψ1

∂y
= −4y3 ,

∂Ψ2

∂x
= 2x ,

∂Ψ2

∂y
= 0 .

It follows that

|Ψ(p)−Ψ(q)| ≤
√

16y6 + 4x2|p− q| ≤ 2r
√

1 + 4r2|p− q| ,

where p = (x1, y1), q = (x2, y2), and |p− q| is the Euclidean distance between p and q. We
choose r = 1/3, so γ = 2r

√
1 + 4r2 = 0.6996. Then R = (1 − γ)r = 0.2. Now, the point

(0, 0.015) satisfies |(0, 0.015)| = 0.015 < 0.2, so this system has a solution (x, y) satisfying
|(x, y)| < 1/3 .

Note. Here we have used the discussion on page 8 in the revised notes: Ψ is a contraction
when √∑

i,j

(∂Ψi/∂xj)2 < 1 .

6. Can you solve the system of equations

x+ y − x2 = 0, x− y + xy sin y = −0.005 ?

Solution. First we rewrite the system in the form of I + Ψ. Indeed, by adding up and
subtracting the equations, we see that the system is equivalent to

x+ (−x2 + xy sin y)/2 = −0.0025, y + (−x2 − xy sin y)/2 = 0.0025 .

Now we can take

Ψ(x, y) =
1

2
(−x2 + xy sin y,−x2 − xy sin y) ,

and proceed as in the previous problem.
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7. Show that the integral equation

y(x) = αex −
∫ 1

0

sinx

3− t
y3(t) dt ,

is solvable for sufficiently small α. Give an estimate on the smallness of α.

Solution. We take

Φ(y)(x) = y(x) +

∫ 1

0

sinx

3− t
y3(t) dt ,

so that

Ψ(y)(x) =

∫ 1

0

sinx

3− t
y3(t) dt .

We have

|Ψ(y1)(x)−Ψ(y2)(x)| =

∣∣∣∣∫ 1

0

sinx

3− t
(y31(t)− y32(t)) dt

∣∣∣∣
≤

∫ 2

0

1

3− t
(y21(t) + |y1(t)y2(t)|+ y22(t))|y1(t)− y2(t)| dt

≤ 1

2

∫ 1

0
(y21(t) + |y1(t)y2(t)|+ y22(t)) dt‖y1 − y2|∞ ,

after noting 1/(3− t) ≤ 1/2 for t ∈ [0, 1]. Therefore, for y ∈ Br(0),

‖Ψ(y1)−Ψ(y2)‖∞ ≤
3r2

2
‖y1 − y2‖∞ ,

and Ψ is a contraction as long as 3r2/2 is less than 1. Let us choose r =
√

2/2 so
that 3r2/2 = 3/4 < 1. By using the theorem on Perturbation of Identity, the equation
Φ(y) = αex is solvable in Br(0) as long as ‖αex‖∞ ≤ R = (1− 3/4)r =

√
2/8 . As ex ≤ e

on [0, 1], we conclude that whenever |α| ≤
√

2e−1/8, this integral equation is solvable.

8. Let A = (aij) be an n×n matrix. Show that the matrix I +A is invertible if
∑

i,j a
2
ij < 1.

Give an example showing that I +A could become singular when
∑

i,j a
2
ij = 1.

Solution. Let Φ(x) = Ix+Ax so Ψ(x) = Ax for x ∈ Rn. We have

‖Ψ(x1)−Ψ(x2)‖2 = ‖A(x1 − x2)‖2 ≤ ‖A‖‖x‖2 .

As explained in Notes, we have the following estimate on the operator norm, ‖A‖ ≤∑
i,j a

2
ij . Take γ =

∑
i,j |aij |. If

∑
i,j aij < 1, Ψ is a contraction and there is only one root

of the equation Φ(x) = 0 in the ball Br(0). However, since we already know Φ(0) = 0, 0
is the unique root. Now, we claim that I + A is non-singular, for there is some z ∈ Rn

satisfying (I +A)z = 0, we can find a small number α such that αz ∈ Br(0). By what we
have just shown, αz = 0 so z = 0, that is, I +A is non-singular and thus invertible.

Note. See how linearity plays its role in this problem.

9. Let f : R → R be C2 and f(x0) = 0, f ′(x0) 6= 0. Show that there exists some ρ > 0 such
that

Tx = x− f(x)

f ′(x)
, x ∈ (x0 − ρ, x0 + ρ),
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is a contraction. This provides a justification for Newton’s method in finding roots for an
equation.

Solution. T ′(x) =
f(x)f ′′(x)

f ′(x)2
. Since f is C2 and f(x0) = 0, f ′(x0) 6= 0, it follows that T

is C1 in a neighborhood of x0 with T (x0) = x0, T
′(x0) = 0 and there exists ρ > 0

|T ′(x)| < 1, x ∈ (x0 − 2ρ, x0 + 2ρ),

As a result, T is a contraction in [x0 − ρ, x0 + ρ].

10. Consider the iteration
xn+1 = αxn(1− xn), x1 ∈ [0, 1] .

Find

(a) The range of α so that {xn} remains in [0, 1] .

(b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].

(c) Show that for α ∈ [0, 1] the fixed point 0 is attracting in the sense: xn → 0 whenever
x0 ∈ [0, 1].

Solution. Let Tx = αx(1−x). The max of T attains at 1/2 so the maximal value is α/4.
Therefore, the range of α is [0, 4] so that T maps [0, 1] to itself. Next, 0 is always a fixed
point of T . To get no other, we set x = αx(1−x) and solve for x and get x = (α−1)/α. So
there is no other fixed point if α ∈ [0, 1]. Finally, it is clear that T becomes a contraction
when α ∈ [0, 1), so the sequence {xn} with x0 ∈ [0, 1] , xn = Tnx0, always tends to 0 as
n → ∞. Although T is not a contraction when α = 1, one can still use elementary mean
(that is, {xn} is always decreasing,) to show that 0 is an attracting fixed point.

11. Show that every continuous function from [0, 1] to itself admits a fixed point. Here we
don’t need it a contraction. Suggestion: Consider the sign of g(x) = f(x)−x at 0, 1 where
f is the given function.

Solution. Let f ∈ C[0, 1]. Clearly, if f(0) = 0, then 0 is a fixed point. So assume
f(0) 6= 0. Here we take f(0) > 0. Consider the continuous function g(x) = f(x) − x. We
have g(0) = f(0) > 0 and g(1) = f(1) − 1 ≤ 0. If equality holds, then f(1) = 1, 1 is a
fixed point. If inequality holds, that is, g(1) < 0, by the mean-value theorem there is some
ξ ∈ (0, 1) such that g(ξ) = 0, that is, f(ξ)− ξ = 0, so ξ is a fixed point. The case f(0) < 0
can be handled similarly.

Note. This example shows that every continuous function from [0, 1] to itself, not only
contractions, admits a least one fixed point. (But not necessarily unique.) Similar result
holds for all continuous maps on a compact, convex subset in Rn to itself. It is called
Brouwer’s fixed point theorem.


